B Physics at CDF and DØ

for the CDF and DØ Collaborations

Aspen 2005 Winter Conference

February 18, 2005

Detectors

- Excellent muon and tracking coverage ⇒ high yields
 - Extended muon system |η|<2.0
 - Tracking up to $|\eta| < 3.0$

- Excellent mass resolution
- Particle ID: p, K and π by dE/dx and TOF
- Hadronic trigger able to trigger on two-track objects at L1
- Impact parameter trigger at L2

 $\tau(\Lambda_b)$

Lifetime Measurements

 $1.22^{+0.22}_{-0.18} \pm 0.04 \, ps$

- Precision measurements constrain inputs to theoretical calculations utilizing nonperturbative techniques
- Theoretical and experimental uncertainties are reduced for ratios of lifetimes

 $\Lambda_h^0 \to J/\psi \Lambda^0$

Measure- ment	Channel	PDG	CDF Result	DØ Result
$\tau(B^+)/\tau(B^0)$	$B^{+} \to J/\psi K^{+}$ $B^{0} \to J/\psi K^{*0}$	1.086±0.017	1.080 ± 0.042	
$\tau(B^+)/\tau(B^0)$	$B \to D^* (2010)^- \mu^+ X$ $B \to \overline{D}^0 \mu^+ X$	1.086±0.017		$1.080 \pm 0.016 \pm 0.014$
$\tau(B_s)$	$B_s^0 \to J/\psi \ \varphi$	1.461± 0.057 ps	$1.369 \pm 0.100^{+0.008}_{-0.010} ps$	$1.444_{-0.090}^{+0.098} \pm 0.020 ps$

 $1.25 \pm 0.26 \pm 0.10 \, ps$

1.229±0.080 ps

B_c Mass and Lifetime at DØ

- Trigger on $J/\psi \to \mu^+ \mu^-$ decays in 210 pb⁻¹ of DØ data
- Reconstruct $B_c^+ \to J/\psi \mu^+ X$ decays
- 231 candidates, signal of 95±12±11 events
- Unbinned likelihood fit gives

$$m = 5.95 \pm 0.14 \pm 0.34 \ GeV/c^2$$

 Average correction factor determined from Monte Carlo to account for the missing momentum of the neutrino gives

$$\tau = 0.448^{+0.123}_{-0.096} \pm 0.121 ps$$

B_c Mass at CDF

- Reconstruct $B_c^{\pm} \rightarrow J/\psi \pi^{\pm}$ decays 360 pb⁻¹ of CDF data
- Layer 00 used for this analysis
- Expected signal rate is order of magnitude smaller than the semileptonic mode
- 19 signal event over a background of 10 events expected yields

 $m = 6.2870 \pm 0.0048 \pm 0.0011 \, GeV/c^2$

Charmless B Decays B→hh at CDF

- Charmless 2-body *B* decays $B \rightarrow h^+h'^-$, $h,h'=K,\pi$ collected by hadronic *B* trigger
 - selects track pairs that exit a displaced vertex
- Use dE/dx in drift chamber to separate pions and kaons

B→hh Branching Fractions at CDF

$$\frac{BR(B_d \to \pi^{\pm}\pi^{\mp})}{BR(B_d \to K^{\pm}\pi^{\mp})} = 0.24 \pm 0.06(stat) \pm 0.05(syst) \\ \frac{f_s \cdot BR(B_s \to K^{\pm}K^{\mp})}{f_d \cdot BR(B_d \to K^{\pm}\pi^{\mp})} = 0.50 \pm 0.08(stat) \pm 0.07(syst) \\ \frac{f_d \cdot BR(B_d \to \pi^{\pm}\pi^{\mp})}{f_s \cdot BR(B_s \to K^{\pm}K^{\mp})} = 0.48 \pm 0.12(stat) \pm 0.07(syst) \\ \frac{BR(B_s \to \pi^{\pm}\pi^{\mp})}{BR(B_s \to K^{\pm}K^{\mp})} < 0.10 @ 90\% C.L. \\ \frac{BR(B_d \to K^{\pm}K^{\mp})}{g_s \cdot BR(B_d \to K^{\pm}\pi^{\mp})} < 0.17 @ 90\% C.L. \\ \frac{f_s \cdot BR(B_s \to K^{\pm}\pi^{\mp})}{f_d \cdot BR(B_d \to K^{\pm}\pi^{\mp})} = 0.11 @ 90\% C.L.$$

CP Violation in Charmless Two-Body B Decays B→hh at CDF

Direct CP asymmetry

$$A_{CP} = \frac{N(\overline{B}_{d}^{0} \to K^{-}\pi^{+}) - N(B_{d}^{0} \to K^{+}\pi^{-})}{N(\overline{B}_{d} \to K^{-}\pi^{+}) + N(B_{d} \to K^{+}\pi^{-})}$$
$$= -0.04 \pm 0.08(stat) \pm 0.01(syst)$$

Charmless B Decays $B_{d,s} \rightarrow \varphi X$ at CDF

Gluonic penguin-dominated decay followed by

 Many beyond-the-SM theories predict new CPviolating phases resulting from heavy particles in the penguin loops

Charmless B Decay $B^{\pm} \rightarrow \varphi K^{\pm}$ at CDF

Branching ratio
measured relative to
B[±] → J/ψ K[±] (some
uncertainties cancel)

$$BR(B^{\pm} \to \varphi K^{\pm}) = (7.2 \pm 1.3(stat) \pm 0.7(syst)) \times 10^{-6}$$

• HF averaging group $\Rightarrow BR = (9.0 \pm 0.6) \times 10^{-6}$

$$A_{CP} = \frac{\Gamma(B^{-} \to \phi K^{-}) - \Gamma(B^{+} \to \phi K^{+})}{\Gamma(B^{-} \to \phi K^{-}) + \Gamma(B^{+} \to \phi K^{+})} = -0.07 \pm 0.17(stat) \pm 0.06(syst)$$

Observation of $B_s \rightarrow \varphi \varphi$ at CDF

• Use $B_s \rightarrow J/\psi \varphi$ as a normalization mode to avoid uncertainties due to the B_d and B_s fragmentation

fractions

- 12 events in signal region, 2 background events expected
 - Combinatorics and reflections from $B_d \rightarrow \varphi K^{*0}$
- 4.8σ signal
- First evidence for this decay mode

- $BR(B_s^0 \to \varphi \varphi) = (1.4 \pm 0.6(stat) \pm 0.2(syst) \pm 0.5(BR)) \times 10^{-5}$
 - SM predicts $BR(B_s^0 \rightarrow \varphi \varphi) = (2.5 5.0) \times 10^{-5}$

$B_{d,s}$ Mixing

• $B_{d,s}$ mass and flavour eigenstates differ, allowing flavour states to mix

- Eigenstates have mass difference Δm_α=m_H-m_L>0
- Eigenstates have width (lifetime) difference $\Delta\Gamma_q = \Gamma_L \Gamma_H > 0$

• Want to measure
$$\frac{\Delta m_s}{\Delta m_d} = \frac{M(B_s)}{M(B_d)} \cdot \frac{\hat{B}(B_s) f^2(B_s)}{\hat{B}(B_d) f^2(B_d)} \left(\frac{V_{ts}}{V_{td}} \right)^2$$

• Extract mass difference Δm_q from oscillation frequency

B_d Mixing

- Need to tag the production flavour of the b quark to know if meson mixed or not
 - Soft muon tagging
 - Low efficiency but high accuracy (dilution)
 - Jet-charge tagging
 - High efficiency but poor dilution
 - Same-side pion tagging
 - High efficiency but poor dilution

B_d Mixing at DØ

- Reconstruct $B_d^0 \to D^*(2010)^- \mu^+ X$ decays in 200 pb⁻¹ of DØ data
- Use $B_d^0 \to \overline{D}^0 \mu^+ X$ decays for tagging studies
- Divide the data into 2 samples
 - Events that can be tagged by the soft muon tagger
 - The remaining events, which are subjected to the combined jetcharge and same-side tagger
 - Events with conflicting initial state flavour are rejected
- CDF used $B \rightarrow D^{(*)}l^+X$ decays in 245 pb⁻¹ of CDF data

$$B_d^0 \to D^* (2010)^- \mu^+ X$$

$$\downarrow \to \overline{D}^0 \pi^-$$

B_d Mixing

 Count the number of mixed and unmixed events in each decay length bin and plot asymmetry vs transverse pseudo-proper decay length

DØ ∆m _d Result	CDF ∆m _d Result	PDG ∆m _d
$0.456 \pm 0.034 \pm 0.025 ps^{-1}$	$0.536 \pm 0.037 \pm 0.015$ $\pm 0.009(sc) ps^{-1}$	$0.502 \pm 0.007 ps^{-1}$

B_d Mixing $\rightarrow B_s$ Mixing

- Current 95% C.L. limit on Δm_s : 14.4 ps⁻¹
- Standard Model says $14.2 < \Delta m_s < 28.1 \text{ ps}^{-1}$ at 95% C.L.

$\Delta\Gamma(B_s)$ at CDF

- $\Delta\Gamma_d/\Gamma_d$ expected to be very small but $\Delta\Gamma_s/\Gamma_s$ could be sizeable
- Mass eigenstates are expected to be nearly-CP eigenstates
- Light-mass eigenstate expected to be CP-even with larger decay width than heavier mass eigenstate
- Measure decay widths directly from the relative contributions of CP-even and CP-odd decays to the observed angular distributions as a function of decay time

$\Delta\Gamma(B_s)$ at CDF

• Reconstruct $B_s^0 o J/\psi \varphi$ followed by $J/\psi o \mu^+\mu^-$ and $\varphi o K^+K^-$ in 260pb⁻¹ of CDF data

$\Delta\Gamma(B_s)$ at CDF

- Plot the "transversity" angular distributions for the masssideband-subtracted signal events
- First time-dependent angular analysis of $\ B_{\scriptscriptstyle
 m c}^{\scriptscriptstyle 0}
 ightarrow J/\psi \ \phi$

decays

Unbinned likelihood fit to mass, proper decay length and transversity angles to get

$$\Delta\Gamma_s = (0.47^{+0.19}_{-0.24} \pm 0.01) ps^{-1}$$

$$\Delta\Gamma_s = (0.47^{+0.19}_{-0.24} \pm 0.01) \, ps^{-1} \qquad \frac{\Delta\Gamma_s}{\Gamma_s} = (65^{+25}_{-33} \pm 1)\%$$
 SM expectation:
$$\frac{\Delta\Gamma_s}{\Gamma_s} = (12 \pm 5)\%$$

$$\frac{\Delta\Gamma_s}{\Gamma_s} = (12 \pm 5)\%$$

Rare Decays: $B_{d,s} \rightarrow \mu^+ \mu^-$

Flavour-Changing Neutral Current process forbidden at

tree level in the SM

• SM expectation:

$$BR(B_s^0 \to \mu^+ \mu^-) < (3.42 \pm 0.54) \times 10^{-9}$$

• *B*_d decay further suppressed:

$$\left| \frac{V_{td}}{V_{ts}} \right| = (4.0 \pm 0.8) \times 10^{-2}$$

- Observation of a significantly larger BR would indicate physics beyond the Standard Model
 - Minimal Supersymmetric Standard Model
 - ◆ Type-II 2-Higgs-doublet model
 - Minimal supergravity models

February 18, 2005

Wendy Taylor, York University

Rare Decays: $B_{d,s} \rightarrow \mu^{\dagger} \mu^{\dagger}$

Background sources include

- Fakes
- Sequential semi-leptonic $b \rightarrow c$ decay
- Double semileptonic decay $b \to \mu^- X, \overline{b} \to \mu^+ X'$
- CDF published results using 171 pb⁻¹
 - One background event expected in each mass window; one event with mass consistent with both mass windows survived
 - $BR(B_s^0 \to \mu^+ \mu^-) < 7.5 \times 10^{-7}$ at 95% C.L
 - $BR(B_d^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-7}$ at 95% C.L

DØ used 240 pb⁻¹

- ◆ 4 events observed in signal region consistent with 3.7±1.1 background events
- $BR(B_s^0 \to \mu^+ \mu^-) \le 5.0 \times 10^{-7}$ at 95% C.L.

Summary

- Both CDF and DØ are operating well
- Each has unique features important for successful B physics analyses
- Too many results to present in a 25 minute talk
- B Physics program at the Tevatron is broad and varied and complementary to that of the B factories
- More exciting results to come!